首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10590篇
  免费   2794篇
  国内免费   1381篇
化学   12495篇
晶体学   205篇
力学   87篇
综合类   45篇
数学   99篇
物理学   1834篇
  2024年   20篇
  2023年   197篇
  2022年   418篇
  2021年   583篇
  2020年   1094篇
  2019年   739篇
  2018年   572篇
  2017年   463篇
  2016年   970篇
  2015年   911篇
  2014年   928篇
  2013年   1137篇
  2012年   945篇
  2011年   758篇
  2010年   561篇
  2009年   542篇
  2008年   494篇
  2007年   514篇
  2006年   428篇
  2005年   381篇
  2004年   373篇
  2003年   312篇
  2002年   204篇
  2001年   146篇
  2000年   150篇
  1999年   103篇
  1998年   128篇
  1997年   99篇
  1996年   92篇
  1995年   80篇
  1994年   77篇
  1993年   38篇
  1992年   52篇
  1991年   44篇
  1990年   46篇
  1989年   35篇
  1988年   16篇
  1987年   11篇
  1986年   22篇
  1985年   17篇
  1984年   20篇
  1983年   9篇
  1982年   12篇
  1981年   9篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1970年   1篇
  1969年   1篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
To develop efficient adsorbent materials for storage and separation of C2H2, an unprecedented supercage MOF, [Me2NH2]⋅[Zn3(ALP)(TDC)2.5]⋅3.5DMF⋅2 H2O ( 1 ) was constructed through medicinal molecule allopurinol (ALP) and S-containing 2,5-thiophenedicarboxylic acid (H2TDC). 1 contains a novel linear trinuclear cluster that is composed by ALP and carboxylates and forms a final uncommon 5-connected yfy topological framework. The framework possesses three types of interlinked cages decorated by rich functional sites, and reveals not only high adsorption capacity for C2H2 but also excellent selective separation for C2H2/CO2 and C2H2/CH4 at 298 K. Dynamic breakthrough experiments on C2H2/CO2 (1:1) mixture and C2H2/CH4 (1:1) mixture also demonstrated the potential of the material to separate C2H2 from CO2 or CH4 mixtures. Molecular simulations were also studied to identify the different CO2- and C2H2- binding sites in 1 , such as carboxylate groups, S atoms and carbonyl groups.  相似文献   
102.
We describe the synthesis of a series of covalently linked dimers of quadrupolar curcuminoid-BF2 dyes and the detailed investigation of their solvent-dependent spectroscopic and photophysical properties. In solvents of low polarity, intramolecular folding induces the formation of aggregated chromophores, the UV/Vis absorption spectra of which display the optical signature characteristic of weakly-coupled H-aggregates. The extent of folding and, in turn, of ground-state aggregation is strongly dependent on the nature of the flexible linker. Steady-state and time-resolved fluorescence emission spectroscopies show that the Frenkel exciton relaxes into a fluorescent symmetrical excimer state with a long lifetime. Furthermore, our in-depth studies show that a weakly emitting excimer lies on the pathway toward a photocyclomer. Two-dimensional 1H NMR spectroscopy and density functional theory (DFT) allowed the structure of the photoproduct to be established. To our knowledge, this represents the first example of a [2π+2π] photodimerization of the curcuminoid chromophore.  相似文献   
103.
发展了一种高效的碱金属盐催化1,2,4-三唑与α,β-不饱和酮及α,β-不饱和二酰亚胺的氮杂Michael加成反应的新方法,以中等到优异的产率得到目标产物.该方法原料易得,底物普适性好,反应条件温和,易实现克级规模的制备.产物容易转化为相应的γ-氨基醇.  相似文献   
104.
Developing efficient and recyclable heterogeneous catalysts for organic reactions in water is important for the sustainable development of chemical industry. In this work, Pd nanoparticles supported on DABCO-functionalized porous organic polymer was successfully prepared through an easy copolymerization and successive immobilization method. Characterization results indicated that the prepared catalyst featured big surface area, hierarchical porous structure, and excellent surface amphiphilicity. We demonstrated the use of this amphiphilic catalyst in two case reactions, i.e. the aqueous hydrodechlorination and Suzuki-Miyaura coupling reactions. Under mild reaction conditions, the catalyst showed high catalytic activities for the two reactions. In addition, the catalyst could be easily recovered and reused for several times. Also, no obvious Pd leaching and aggregation of Pd nanoparticles occurred up during the consecutive reactions.  相似文献   
105.
A unique trend in the binding affinity between cationic metal−organic cages (MOCs) and external counteranions in aqueous media was observed. Similar to many macroions, two MOCs, sharing similar structures but carrying different number of charges, self-assembled into hollow spherical single-layered blackberry-type structures through counterion-mediated attraction. Dynamic and static light scattering and isothermal titration calorimetry measurements confirm the stronger interactions among less charged MOCs and counteranions than that of highly charged MOCs, leading to larger assembly sizes. DOSY NMR measurements suggest the significance of thick hydration shells of highly charged MOCs, inhibiting the MOC-counterion binding and weakening the interaction between them. This study demonstrates that the greater role played by hydration shell on ion-pair formation comparing with charge density of MOCs.  相似文献   
106.
Hydrodefluorination (HDF) is a very important fundamental transformation for conversion of the C−F bond into the C−H bond in organic synthesis. In the past decade, much progress has been achieved with HDF through the utility of low-valent metals, transition-metal complexes and main-group Lewis acids. Recently, novel methods have been introduced for this purpose through photo- and electrochemical pathways, which are of great significance, due to their considerable environmental and economical advantages. This Review highlights the HDF of fluorinated organic compounds (FOCs) through photo- and electrochemical strategies, along with mechanistic insights.  相似文献   
107.
A supramolecular organic framework-type photocatalyst, named TM-SOF, is constructed by the self-assembly of cucurbit[8]uril and a tetra-arm monomer containing four N, N’-dimethyl 2,5-bis(4-pyridinium)thiazolo[5,4-d]thiazole (MPT) moieties. Benefiting from the multivalent assembly, a photocatalytically active supramolecular MPT dimer can be stably formed in TM-SOF. In addition, TM-SOF exhibits better stability against temperature, substrate, and light irradiation. As a result, TM-SOF shows a significantly improved performance for the photocatalytic aerobic oxidation of aryl boronic acids and thioethers. It is anticipated that this line of research will provide a facile approach for fabricating high-performance supramolecular photocatalysis systems.  相似文献   
108.
Hydrogen energy is an abundant, clean, sustainable and environmentally friendly renewable energy source. Therefore, the production of hydrogen by photocatalytically splitting water on semiconductors has been considered in recent years as a promising and sustainable strategy for converting solar energy into chemical energy to replace conventional energy sources and to solve the growing problem of environmental pollution and the global energy crisis. However, highly efficient solar-driven photocatalytic hydrogen production remains a huge challenge due to the poor visible light response of available photocatalytic materials and the low efficiency of separation and transfer of photogenerated electron-hole pairs. In the present work, organic heterojunction structures based on bacteriochlorophyll (BChl) and chlorophyll (Chl) molecules were introduced and used for solar-driven photocatalytic hydrogen production from water under visible light. Also, noble metal-free photocatalyst was successfully constructed on Ti3C2Tx nanosheets by simple successive deposition of Chl and BChl, which was used for the photocatalytic splitting water to hydrogen evolution reaction (HER). The results show that the optimal BChl@Chl@Ti3C2Tx composite has a high HER performance with 114 μmol/h/gcat, which is much higher than the BChl@Ti3C2Tx and Chl@Ti3C2Tx composites.  相似文献   
109.
Conjugated polymers are promising candidates for next‐generation low‐cost flexible electronics. Field‐effect transistors comprising conjugated polymers have witnessed significant improvements in device performance, notably the field‐effect mobility, in the last three decades. However, to truly make these materials commercially competitive, a better understanding of charge‐transport mechanisms in these structurally heterogeneous systems is needed for providing systematic guides for further improvements. This review assesses the key microstructural features of conjugated polymers across multiple length scales that can influence charge transport, with special attention given to the underlying polymer physics. The mechanistic understanding from collective experimental and theoretical studies point to the importance of interconnected ordered domains given the macromolecular nature of the polymeric semiconductors. Based on the criterion, optimization to improve charge transport can be broadly characterized by efforts to (a) promote intrachain transport, (b) establish intercrystallite connectivity, and (c) enhance interchain coupling. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1559–1571  相似文献   
110.
CeO2-based catalysts are widely studied in catalysis fields. Developing one novel synthetic approach to increase the intimate contact between CeO2 and secondary species is of particular importance for enhancing catalytic activities. Herein, an interfacial reaction between metal–organic framework (MOF)-derived carbon and KMnO4 to synthesize CeO2−MnO2, in which carbon is derived from the pyrolysis of Ce-MOFs under an inert atmosphere, is described. The MOF-derived carbon is found to restrain the growth of CeO2 crystallites under a high calcination temperature and, more importantly, intimate contact within CeO2/C is conveyed to CeO2/MnO2 after the interfacial reaction; this is responsible for the high catalytic activity of CeO2−MnO2 towards CO oxidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号